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Limitations of the first law
The first Law shows a definite relation between the heat absorbed  and 

work performed  by a system in a given process. But it puts no 

restriction on direction of flow of heat.

Can you extract heat from ice by cooling to a lower temperature and

using it to heat water?

Does a metal bar having uniform temperature become hot at one end 

and cold at other end spontaneously?

Can water flow uphill spontaneously?

Can you stop a smell from spreading?

Can you fill toothpaste back into the toothpaste tube once it has come 

out?



Spontaneous or irreversible processes
Natural processes are spontaneous and irreversible.
Water flows downhill spontaneously.
If a metal bar is hot at one end and cold at the other end, heat flows 
spontaneously from hot end to cold end until the temperature of the 
rod becomes uniform throughout.
The diffusion of a solute from a more concentrated solution to a less
concentrated solution when these are brought in contact proceeds
spontaneously till the concentration becomes uniformly the same.
Heat flows spontaneously from a hot reservoir to a cold reservoir.
For the reverse to take place, as in a refrigerator, energy has to be 
supplied from outside the system.



Spontaneous or irreversible processes
Electricity flows spontaneously from a higher potential to a lower 

potential. The direction of flow can be reversed only by applying an 

external field in the opposite direction.

A piece of zinc when placed in contact with a solution of copper 

sulphate dissolves spontaneously, precipitating copper.

Zn(s) +CuSO4(aq) → ZnSO4+ Cu(s)

A definite amount of heat is also evolved. The above reaction can be 

reversed only by passing current between copper rod and zinc 

sulphate solution. The electrical energy required to do so will be more 

than the heat energy evolved in the direct reaction.



Spontaneous or irreversible processes

A gas expands spontaneously from a region of high pressure to a 

region of low pressure.

The first law does not deny the possibility that a metal bar having 

uniform temperature can spontaneously become warmer at one end 

and cooler at the other.

All the law demands is that the heat energy lost at one end should be 

equal to the energy gained at the other end.

But we know from experience that such a change does not occur 

without expenditure of energy from another source.



So we conclude:
Any process which occurs without outside intervention is spontaneous.

• When two eggs are dropped they spontaneously break. 

• The reverse reaction (two eggs leaping into your hand with their shells back 
intact) is not spontaneous. 

• We can conclude that a spontaneous process has a direction. 

• A process that is spontaneous in one direction is not spontaneous in the 
opposite direction. 

• The direction of a spontaneous process can depend on temperature. 

• Ice turning to water is spontaneous at T > 0°C. 

• Water turning to ice is spontaneous at T < 0°C.

All natural processes proceed spontaneously and are thermodynamically

Irreversible in character



Carnot cycle
Work can be obtained from spontaneous 
processes. But since these proceed irreversibly,
The work obtained is much less than work 
obtained from reversible process.
Cyclic Process
When a system, after completing a series of 
changes, returns to its original state, it is said to 
have completed a cycle.
The entire process is said to be a cyclic process.
Since the internal energy of a system depends only 
Upon the state, it means that in a cyclic process,
The net change in internal energy is zero.



Carnot cycle
In the early 19th century, steam engines came to 

play an increasingly important role in industry 

and transportation. However, a systematic set of 

theories of the conversion of thermal energy to 

motive power by steam engines had not yet been 

developed. Nicolas Léonard Sadi Carnot (1796-

1832), a French military engineer, 

published Reflections on the Motive Power of 

Fire in 1824.



Carnot cycle
The book proposed a generalized theory 

of heat engines, as well as an idealized 

Model of a thermodynamic system for a 

heat engine that is now known as the 

Carnot cycle. 

Carnot developed the foundation of the 

second law of thermodynamics, and is 

often described as the "Father of 

thermodynamics."



Carnot cycle
Carnot demonstrated the maximum convertibility 

Of heat into work. The system consists of one mole of 

An ideal gas which is subjected to a series of four 

Successive processes, commonly termed as four 

Strokes.

Stroke I. Isothermal expansion

The gas is allowed to expand reversibly and 

Isothermally at the temperature T2 so that volume 

increases from V1 to V2. Since in isothermal expansion

ΔE=0, from First law equation, 0=q-w



Carnot cycle
So, the heat absorbed is equal to the work done by

The gas. If q2 is the heat absorbed by the system,

At temperature T2 and w1 be the work done by the 

System, then

q2=w1=RT2 ln(V2/V1)                   (1)

II. Stroke II. Adiabatic expansion

The gas is now allowed to expand adiabatically and 

Reversibly from volume V2 to V3.

Since the process is adiabatic, heat exchanged with 

Surroundings is 0. Since expansion work is taking 

Place, it is positive and therefore takes place at the

Expense of internal energy. The temperature thus 



Carnot cycle
Lowered in this step to T1. Since q=0, the first law 

Becomes  0= ΔE + w or –ΔE=w

But – ΔE = - CvdT = -Cv(T1-T2) = Cv(T2-T1)

Therefore, w2= Cv(T2-T1)                          (2)

III. Stroke III. Isothermal Compression

The gas now undergoes isothermal reversible 

Compression at lower temperature T1 and the volume 

decreases from V3 to V4. In this step work is being 

done on the system and heat will be produced and 

given out to surroundings. Call it –q1



Carnot cycle
Since this is an isothermal process, ΔE=0.

Remembering that work done will be negative and heat

Evolved will also be negative, we can write

-q1 = -w3 =RT1 ln (V4/V3)          (3)

IV. Stroke IV. Adiabatic Compression

Finally by an adiabatic compression, the gas is restored 

to its initial V1 and temperature T2. Since work is done 

on the system, it is negative. Since it is an adiabatic 

Process, q=0. From the first law, ΔE + w=0

Or, ΔE =-w=-(-w4)

-w4=- ΔE= -Cv(T2-T1)                 (4)



Carnot cycle
The net heat absorbed by (q) by the ideal gas in the whole cycle is given by

q=q2+(-q1) = RT2 ln(V2/V1) + RT1 ln (V4/V3)      (5)

q= RT2 ln(V2/V1) - RT1 ln (V3/V4)                          (6)

We have already discussed the following expression for an adiabatic process:

Cv ln (Tf /Ti)= R ln (Vf/Vi)

So for step II and step IV we can write:

Cv ln(T1/T2)=R ln(V3/V2)     for step (2)

or, Cv ln(T2/T1)=R ln(V2/V3) 

Cv ln(T2/T1)=R ln(V1/V4)     for step (4)

Equating the right hand side of both equations, we get V2/V3= V1/V4

V2/V1  = V3/V4



Carnot cycle
Hence equation (6) becomes q= RT2 ln(V2/V1) - RT1ln (V2/V1)  

q= R(T2-T1)ln (V2/V1)      (7)

Similarly, the net work done by the gas is given by 

w=w1+ w2+(-w3)+(-w4)

=RT2 ln(V2/V1)+ Cv(T2-T1) + RT1 ln (V4/V3) –Cv(T2-T1) 

= RT2 ln(V2/V1) - RT1 ln (V3/V4) 

= RT2 ln(V2/V1) - RT1ln (V2/V1)

= R(T2-T1)ln (V2/V1) 

w= R(T2-T1)ln (V2/V1)                                           (8)

It is evident from equation (7) and (8) that q=w and that is what happens 

in a cyclic process.



Carnot cycle-efficiency
We have seen that the net work done by the system is equal to

w= R(T2-T1)ln (V2/V1)
and the heat absorbed by the system at higher temperature T2 

q2=RT2 ln(V2/V1) . From both these equations we get                              

w= q2
T2−T1

T2
(9)

Since T2−T1
T2

<1, it follows that w < q2 This means that only a 

part of the heat absorbed by the system at the higher temperature T2 

is transformed into work. The rest of heat (q1) is given out by the 
system to the surroundings when it is at a lower temperature T1



The second law of thermodynamics
Based on the above observations, Kelvin stated the Second law in 

the following words:

It is impossible to use a cyclic process to transfer heat from a reservoir 

and to convert it into work without transferring at the same time a 

certain amount of heat from a hotter to a colder part of a body.

Having understood that complete conversion of heat cannot take 

place into work, the fraction which is converted would be important.

This ratio is called the Efficiency of an engine and is defined as the 

following:



Efficiency of a heat engine
The fraction of heat absorbed by an engine which it can convert into

Work gives the Efficiency(Ƞ) of the engine.

From equation (9), it is seen that 

Efficiency, Ƞ= w

q2
=T2−T1

T2
(10)

Since T2−T1
T2

<1, the efficiency of a heat engine is always less than 1.

No heat engine has been made which has an efficiency equal to 1.

It also means that efficiency depends upon difference between T2 and 

T1. Greater the value of T2-T1, greater the efficiency. This is why 

Superheated steam is used in a steam engine.



Efficiency of a heat engine
The net heat absorbed by the system is equal to q2+(-q1) and according 

to First Law of Thermodynamics, this must be equivalent to the net 

work done by the system. Thus,

q= q2-q1

Combining this with equation (10),we get
q2−q1

q2
= T2−T1

T2

Efficiency=Ƞ= q2−q1
q2

=T2−T1
T2

(11)

This equation was derived by assuming that the series of changes were 

brought about in a thermodynamically reversible manner to obtain maximum 

work but in reality the efficiency is much less as process is not reversible.



Numericals on efficiency
Q1. Calculate the maximum efficiency of an engine operating between 

110 C and 25C.

Ans. Efficiency is given by Ƞ= T2−T1
T2

T2 =273+110=383K

T1   =273+25=298K  

Ƞ= 383−298
383

=0.222 or 22.2%



Numericals on efficiency
Q2. Heat supplied to a heat engine is 453.6 kcal. How much useful work 
can be done by the engine which works between 0 C and 100 C?

Ans. 

T2 =273+100=373K

T1   =273+0=273K

q2=453.6 kcal=453.6X4.18=1897.8 kJ

w= q2
T2−T1

T2
=1897.8X 373−273

373
kJ

=508.8 kJ



The concept of entropy
The equation               

Ƞ= q2−q1
q2

=T2−T1
T2

may be rearranged as

1- q1
q2

= 1- T1
T2

or, q1
T1

=  q2T2
(12) 

Equation (12) may be written. In the general form as:
qrev
T

=constant                              (13)

Where qrev is the quantity of heat exchanged in a process carried out 

reversibly at a temperature T.



The concept of entropy
This is an important generalization since the quantity  

q
rev

T
represents 

a definite quantity or state function, viz, the entropy change of a system.

The concept of entropy

Equation (12) has been derived by giving a + sign to the heat absorbed and 

a – sign to heat evolved. If we describe q2 and q1    merely as heats 

exchanged , equation (12) may be written as 

+ q1
T1

=- q2T2

or,  q1
T1

+  q2T2
= 0                                (14)                



entropy
Thus, when isothermal processes and adiabatic process are carried out 

in a Carnot cycle reversibly, the summation of q/T terms is equal to zero.

Any reversible cyclic process can be can be shown to be made up of a

series of Carnot cycles.

Consider this figure and the cyclic process in which 

the process is carried out from A to B and B to A.

The path may be considered to be made up of carnot

cycles. If each change is made very small by increasing

the number of cycles, the paths inside the loop cancel

out and the cycle corresponds to the continuous curve

ABA.



entropy
Knowing that for each carnot cycle,

q1
T1

+  q2
T2

=0

It follows that in case of reversible cycle ABA, the above expression will

take the form                  σ𝑞/𝑇=0                                           (15)

Since the cycle is performed in two steps A→B→A, it follows that

σ𝑞/𝑇=𝐴
𝐵
𝑑𝑞/𝑇 𝐵+

𝐴
𝑑𝑞/𝑇=0                                     (16)

𝐴
𝐵
𝑑𝑞/𝑇 is the summation of all the 

𝑑𝑞

𝑇
terms when system changes from 

path A→ B along path I and 𝐵
𝐴
𝑑𝑞/𝑇 is the similar integral when system

returns B→ A to original state along path II



entropy
It follows from equation (16) that 

𝐴
𝐵
𝑑𝑞/𝑇 (path I) = - 𝐵

𝐴
𝑑𝑞/𝑇 (path II)

or               𝐴
𝐵
𝑑𝑞/𝑇 (path I) =   𝐴

𝐵
𝑑𝑞/𝑇 (path II)   

It is thus clear that 𝐴
𝐵
𝑑𝑞/𝑇 is a definite quantity independent of the 

path taken for the change and depends only upon the initial and final 

states of the system.

This quantity would be a state function like ΔE and ΔH. This function is 

called Entropy and denoted by the symbol S. If SA is the entropy in the 

initial state and SB in the final state, the change in entropy is given by

ΔS= SB -SA    =𝐴
𝐵
𝑑𝑞/𝑇



entropy
For each small change,         dS=dq/T 

At constant temperature, for a finite change, dS becomes ΔS and dq 

becomes q.  

ΔS=q/T

Entropy is a function of state and therefore, ΔS for change from A to B 

will be the same whether reversible or not.

However, in order to know the quantity of change, it will be given by

ΔS= 𝐴
𝐵
𝑑𝑞/𝑇

only when the change has been brought about reversibly. 



entropy
Change of entropy of a system may be defined as the integral of all the 
terms involving heat exchanged (q) divided by absolute temperature (T)
during each infinitesimally small change of the process carried out 
reversibly.
Thus the entropy change for a finite change of state of a system at 
constant temperature is given by

ΔS= 
q
rev

T
Thus, entropy is a state function which depends only on the initial and 
final state. It is independent of the manner in which the change has 
been brought about, reversibly or irreversibly. But for calculation of 
ΔS, we need to know the value of qrev.



entropy
Units of entropy

Since entropy is expressed in heat divided by temperature, entropy is 

expressed in terms of calories per degree Kelvin, i.e., cal K-1

In SI unit, entropy is expressed in Joules per degree Kelvin (J K-1)

Entropy is an extensive property. Its value depends upon the quantity

of the substance.



Entropy change in isothermal expansion
In isothermal expansion of an ideal gas, carried out reversibly, there will

be no change in internal energy, or, ΔE = 0

Hence, from the first law,   qrev = w

In such a case, the work done in isothermal reversible expansion is given by

w = nRT ln (V2/V1)

Therefore, ,   qrev = nRT ln( V2/V1)

Hence,                    ΔS= 
qrev
T

=
1

T
X nRT (ln V2/V1)

or,   ΔS= nR ln( V2/V1)



numerical
Q1. 5 moles of an ideal gas expand reversibly from a volume of 8 litres 

to 80 litres at a temperature of 27 C. Calculate  the change in entropy

R = 8.314 J K-1 mol-1

Ans. ΔS= nR ln( V2/V1)

=5 moles X 8.314 J K-1 mol-1X2.303X log 80/8

Given: =95.73 J K-1

n=5 moles

V1=8 lit

V2=80 lit

T= 27 C=300K



Entropy change in irreversible process
Consider isothermal expansion of an ideal gas at constant temperature

into vacuum. This will take place irreversibly, or spontaneously.

• Since there is no opposing force, work done by system will be 0.

( As Pext is zero.)

• Since there is no change in temperature during the process, there will 

be no change in internal energy of the system, ΔE=0

• Hence from 1st Law of thermodynamics, q= ΔE + w= 0

• In other words, no heat is supplied to or removed from surroundings.

• Entropy of the surroundings, therefore, remains unchanged.



• The entropy of a system is a function of initial and final states only.

• In this case, if the volume changes from V1 to V2, at constant 

temperature T. Hence entropy increase of system , considering one

mole of a gas will be given as:

ΔS= R ln( V2/V1)

• Total increase in entropy of the system and surroundings during the 

spontaneous process of expansion considered above is R ln( V2/V1)

• Since V2˃V1 ,it is obvious that spontaneous (irreversible) isothermal 

expansion of a gas is accompanied by increase in entropy of system

and surroundings taken together.

ΔSsys + Δssurr ˃ 0



Entropy change in reversible process
Let us now consider isothermal reversible expansion of the ideal gas

from volume V1 to V2  carried out at temperature T.

• The expansion is carried out infinitesimally slowly; the pressure on 

the frictionless piston is so adjusted that it remains less than that

of the gas by an infinitesimally small amount.

• The gas does some work given by w=PΔV

• ΔE=0 as the process is isothermal

• An amount of heat qrev is absorbed by the system at temperature T 

reversibly from surroundings.

• Hence increase in entropy of the system is qrev /T



• The heat lost reversibly at temperature T by the surroundings is also
qrev . Hence, decrease in entropy of the surroundings is qrev /T.

• Giving proper signs , the net entropy change of system and 
surroundings taken together is 

qrev /T- qrev /T=0
or,     ΔSsys + Δssurr = 0

• Thus in a reversible process, the total entropy change of the system
and surroundings taken together is 0.
We may conclude that a thermodynamically irreversible process is 
always accompanied by an increase in the entropy of the system and
its surroundings while in a thermodynamically reversible process, 
the entropy of the system and its surroundings remains unaltered.



This generalization becomes a criterion for distinguishing between
an irreversible and a reversible process.
We may put the above statement in the form of following mathematical
expression:

ΔSsys + Δssurr = 0  ( for reversible process)
ΔSsys + Δssurr ˃ 0  ( for irreversible process)

Combining the two, we have
ΔSsys + Δssurr ≥ 0 where = sign refers to a reversible process

While the ˃ sign refers to an irreversible process.

This conclusion helps us to predict whether a process can take place 
spontaneously or not ,i.e., whether it is thermodynamically feasible or 
not.



SECOND LAW OF THERMODYNAMICS IN TERMS OF ENTROPY

ΔSsys + ΔSsurr ≥ 0

This equation represents the second law of thermodynamics in terms 

of entropy change. This equation may be stated in words as

“In a reversible process, the entropy of the system and the surroundings

taken together remains constant while in an irreversible process, the 

entropy of the system and surroundings increases”.

Since all processes in nature occur spontaneously (irreversibly), it 
follows

that the entropy of the universe is increasing continuously.



Clausius summed up the first law and second law as:

The energy of the universe remains constant;

the entropy of the universe tends towards a 

maximum.



Entropy change in change of phase
• Entropy change from solid phase to liquid phase (fusion)

ΔSf = ΔHf /Tf

• Entropy change from liquid phase to vapour phase (vaporization)
ΔSv = ΔHv /Tb

• Entropy change from solid phase to vapour phase (sublimation)
ΔSsub = ΔHsub /Tsub

• Entropy change from one crystalline form to another (transition)
ΔSt = ΔHt /Tt

In all the above processes, ΔS is positive as ΔH is positive.



Entropy changes with changes in p, v and t.
Since entropy of a system varies with the state of a system, its value 
for a pure substance will depend upon any of the two variables out of 
three, T, P and V.
Since T is generally taken as one of the variables, the other one will be 
V or P.

When T and V are the two variables.
The increase in entropy of the gas for an infinitesimally small change 
is given by the expression 

ΔS= 
dqrev
T

Where  dqrev is the small amount of heat absorbed by the system 
reversibly from the surroundings at temperature T.



From the equation of first law, 

dqrev=dE + PdV                                (1)

Substituting the value of dE as CvdT, we have

dqrev= CvdT +PdV                             (2)

For one mole of an ideal gas,

dqrev= CvdT +RTdV/V                       (3)

Dividing equation (3) by T, we have

dqrev/T=dS= CvdT/T +RdV/V            (4)

Integrating equation (4) between initial state 1 and final state 2

ΔS=S2-S1= Cv𝑇1
𝑇2 𝑑𝑇

𝑇
+ R𝑉1

𝑉2
𝑑𝑉/𝑉 (5)



Thus,      ΔS=Cv ln 
T2

T1
+ R ln 

V2

V1
(6)

Thus, entropy change for an ideal gas depends upon volumes and 

pressure ,both.

When T and P are the two variables.

For any two states of an ideal gas, we can write

P1V1=RT1

P2V2=RT2

Therefore,                         
V2

V1
= 

P1T2

P2T1
(7)

Substituting equation (7) in equation (6), we get:



Thus,      ΔS=Cv ln 
T2

T1
+ R ln 

P1T2

P2T1
(6)’

ΔS=Cv ln 
T2

T1
+ R ln 

P1

P2

+ R ln 
T2

T1
(8)

Remembering that CP-Cv=R,

ΔS=(Cv +R)ln 
T2

T1
+ R ln 

P1

P2

(9)

Which can be rewritten as

ΔS=(Cv +R)ln 
T2

T1
- R ln 

P2
P1

(10)

ΔS=CP ln 
T2

T1
- R ln 

P2
P1

(11)

It is evident that the entropy change of an ideal gas depends on 

pressure as well as temperature.



numericals
Q1. Calculate the change in entropy accompanying the heating of one 

mole of Helium gas from a temperature of 298K to 1000K at constant 
pressure. Assume that Cv=3/2 R

ΔS=n(Cv +R)ln 
T2

T1
- nR ln 

P2
P1

Given:                       Since P is constant the second term in this equation

n=1 mole                 becomes 0.

T1=298K                  ΔS=1 mole X(3/2+1)X8.314 JK-1mole-1X2.303X log1000/298

T2=1000K                     =2.5X8.314X2.303Xlog1000/298 JK-1

Cv=3R/2                        =25.17 JK-1



Q 2. One mole of an ideal gas is heated from 100K to 300K. Calculate ΔS if

(a) Volume is kept constant (b) pressure is kept constant.  Cv=1.5R

(a) ΔS=Cv ln 
T2

T1
+ R ln 

V2

V1
Since V is constant, second term is 0 

ΔS=1moleX1.5X8.314 JK-1mole-1X2.303Xlog 300/100

=13.7 JK-1

(b) ΔS=(Cv +R)ln 
T2

T1
- R ln 

P2
P1

Since P is constant, second   term is 0       

Given:                      ΔS=1moleX(1.5+1)X8.314JK-1mole-1X2.303Xlog300/100

n=1 mole                     =2.5X8.314X2.303X0.4771

T1=100K                        =22.8 JK-1

T2=300K



Entropy changes in different processes
There are three different processes that we are familiar with:

(a) Isothermal process (b) Isobaric process (c) Isochoric process

ΔS=Cv ln 
T2

T1
+ R ln 

V2

V1
(6)

ΔS=CP ln 
T2

T1
- R ln 

P2
P1

(11)

(a) Isothermal process

Since temperature is constant, from equation (6) and (11), we get

ΔST =R ln V2/V1 = -R ln P2/P1

This means that in isothermal expansion, ΔST will be positive.

Conversely, isothermal compression will be accompanied by decrease 

in entropy.



(b) Isobaric process

At constant pressure, equation (11) will become

ΔSP=CP ln 
T2

T1

It follows that in an isobaric process, if temperature increases, entropy 

also increases.

(c) Isochoric process

At constant volume, equation (6) will give us 

ΔSV=Cv ln 
T2

T1

Increase in temperature at constant volume is accompanied by 

increase in entropy.



Entropy change in chemical reactions
The entropy change of a chemical reaction is given by the difference 

between the sum of the entropies of all the products and the sum of all 

entropies of all the reactants.

Consider a chemical reaction of the type

aA+ bB+ cC……→ lL+ mM+ nN….

The entropy change of the reaction, according to the above definition

Is given by

ΔS=(lSL+ mSM+….) - (aSA+ bSB+….)

ΔS=σ𝑺 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 - σ𝑺 𝒓𝒆𝒂𝒄𝒕𝒂𝒏𝒕



Standard entropies

Entropy of 1 mole of a substance in pure state at one atmospheric 

pressure and 25oC, is termed as standard entropy of that substance 

and is denoted as So.

In a reaction when every substance is in its standard state, the entropy

change is said to be standard state entropy change. This is denoted

by ΔSo.

The general equation is then written as 

ΔS=σ𝑺𝒐 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 - σ𝑺𝒐 𝒓𝒆𝒂𝒄𝒕𝒂𝒏𝒕



Physical significance of entropy
1. Entropy as a measure of disorder of the system.

We have seen that all spontaneous processes are accompanied by an 

increase in entropy.

• Flow of heat from hot end to cold end of a conductor,

• Flow of electricity from higher potential to lower potential,

• Diffusion of a solute from a higher concentration to lower 
concentration,

are all accompanied by increase of entropy.

It can also be seen that there is increase of disorder in the system.



• There is a certain order when one end is hot and other is cold. As 

soon as heat starts flowing from hot end to cold end, there is 

movement of electrons. So there is an increase in disorder of the 

system. Finally equilibrium is restored when the temperature 

becomes same at both ends.

• In a similar way, when current flows from a higher to a lower potential, 

there is increase in disorder due to flow of electrons.

• When solutions of two concentrations are mixed, there is movement 

of solute molecules, leading to an increase in disorder.

Thus spontaneous processes are accompanied by an increase in entropy

as well as disorder of the system.



2. Entropy as a measure of probability.

We have just seen that all spontaneous processes are accompanied by

an increase in entropy and an increase in disorder of the system. 

If we look carefully, we can understand that a spontaneous process 

goes from a less probable state to a more probable state.

In other words, a spontaneous change invariably takes place from a less 

probable state to a more probable state.



EXAMPLE OF MORE PROBABLE STATE
Let us consider an example of a gas which is in a vessel. For simplicity

Let us assume that there are only 4 molecules in the first vessel. Let 

this vessel be connected to another vessel which is attached to the 

first                                        one. The two vessels are of the same size.

After                                      opening the connecting door between the 

Two vessels, the molecules can be in either vessel. Let us call the 

Vessels L and R, denoting left and right.

Before connecting the two vessels all molecules were in left vessel.

After opening the door , the molecules can be in either vessel. 

So each molecule can have two possibilities, L or R.



So the possibility of 4 molecules will be 24 or 16.

The probability of all molecules remaining in L will be 1/16.

The probability of molecules spreading to either vessel will be 16-1=15

So the probability of spreading will be 15/16

Since 15/16 > 1/16, it is obvious why smells spread.

If there are a large number of molecules, let us say 6.023X1023 molecules,

The probability of not spreading would be 1/2 6.023X1023

Thus any system, spontaneously goes from a less probable to a more 

probable state.



Observing the surroundings is difficult!
We have seen that observing the surroundings is difficult and 

tedious. Another way has been devised to make things simpler. We 

are aware of the following relationship:

ΔS total = ΔSsurr + Δssys

Since the surroundings give an amount of heat to the system, the 

Surroundings themselves lose an amount of heat given by – ΔH.



The above equation thus becomes 

ΔS total = -ΔH/T+ ΔSsys

Multiplying this equation by T, we get

TΔS total = -ΔH+ TΔSsys

Multiplying this equation by – sign, we get

- TΔS total = ΔH-TΔSsys

The quantity    - TΔS total is called Gibb’s Free Energy change ΔG .

Since ΔS total is positive, it follows that - TΔS total will be negative.

That is, ΔG is negative for all spontaneous changes.

And                   G=H-TS

In a similar way , Helmholtz Energy A has been defined as A=E=TS



Helmholtz and Gibb's free energy
We have seen that the change in entropy of the system and 

surroundings taken together is a criterion of feasibility of a reaction.

However, it is not always convenient to observe the surroundings.

We may consider the change in entropy in terms of other state functions.

Two such functions are the work function and the free energy function

Represented by A and G respectively.

They are defined by the equations 

A=E-TS                                          (1)

G=H-TS                                         (2)

Since E,H and S depend on the state of a system, A and G will also depend

On the state of the system. That is, A and G will be state functions. 



Let the three functions in equation (1) be in the initial state at 
temperature T and given by A1, E1 and S1 so that

A1=E1-TS1                                                (3)

Let a change take place at the same temperature T so that the values of 
the state become A2, E2 and S2 . Then,

A2=E2-TS2 (4)

Subtracting (3) from (4) we get,

A2-A1=(E2-E1)-T(S2-S1)

ΔA=ΔE-TΔS                           (5)

If the change is brought about reversibly at the temperature T and the 
heat absorbed is qrev, then ΔS=qrev/T. Putting this value in (5), we get



Equation (5) then becomes

ΔA=ΔE-qrev                                           (6)

But from the first law of thermodynamics, qrev=ΔE +wrev

Therefore,  -wrev= ΔE-qrev                                      (7)

Comparing equations (6) and (7), 

ΔA=-wrev

or,   - ΔA=wrev

Since the process is carried out reversibly, w represents the maximum 

work.

Thus, decrease in the function A(- ΔA ) gives the maximum work that 

can be obtained from the system during the given change.

The function A is therefore called the work function or the Helmholtz

Free energy .



Returning to equation (2), if G1, H1 and S1 are the state functions in the 

Initial state, then        

G1=H1-TS1                                              (8)

And temperature remaining constant all along, the system undergoes 

Change, at final state we can write

G2=H2-TS2                                              (9)

Subtracting the two equations we get

(G2-G1)=(H2-H1)-T(S2-S1)

Or,                                          ΔG=ΔH-TΔS                     (10)

We already know that ΔH= ΔE+PΔV, we can write equation (10) as

ΔG= ΔE+PΔV- TΔS           (11)



Comparing with equation (5), we get

ΔG= ΔA+PΔV

But since  ΔA is equal to -wrev 

Therefore,                       ΔG= - wrev +PΔV

or,                       - ΔG=  wrev – PΔV                                (12)

The quantity PΔV is the work done by the gas on expansion against the

constant external pressure P.

Therefore, - ΔG gives the maximum work obtainable from a system 

other than the work due to change in volume at constant temperature 

and pressure. The work other than that due to change in volume is 

called net work. Thus, 

Net work = wrev – PΔV= - ΔG                  (13)



Thus, 

Net work = wrev – PΔV= - ΔG

• Hence, - ΔG is a measure of the maximum net work that can be 

obtained from a system at constant temperature and pressure.

• The quantity G is due to Gibb’s and is called the Gibb’s free energy.

• Thus, - ΔG is a measure of decrease in free energy.

• The net work it measures may be electrical or chemical work.



Variation of free energy with temperature 
and pressure 

According to equation (2) 

G=H-TS

Since                           H=E +PV

Therefore,                 G=E + PV-TS                                       (14)

Upon differentiation, 

dG=dE+PdV+ VdP- SdT- TdS                (15)

The first law equation for an infinitesimal change may be written as

dq=dE+ dw                                   (16)

If work dw is only due to expansion, then 

dq=dE+ PdV                             (17)



For a reversible process, 

dS=dq/T

Therefore,                           TdS=dq=dE+PdV                             (18)

Combining equations (15) and (18), we have

dG=VdP-SdT                                    (19)

This equation gives the change of free energy when a system 

undergoes a reversible change of pressure as well as temperature.

If pressure remains constant, then

dG=-SdT

Or,                                                ( 
𝜕𝐺

𝜕𝑇
)P= -S                                    (20)



If temperature remains constant, then from equation (19), we have

dG=VdP

Or,                                          ( 
𝜕𝐺

𝜕𝑃
)T=V                                      (21)

Let the free energy of a system be G1in the initial state and G2 in the 

final state when change in pressure has taken place at constant 

temperature. Integrating equation (21), we get

ΔG=G2-G1=𝑃1
𝑃2
𝑉𝑑𝑃 (22)

If we are considering 1 mole of an ideal gas, then PV=RT and V=RT/P

ΔG=𝑃1
𝑃2
𝑉𝑑𝑃=RT𝑃1

𝑃2
𝑑𝑃/𝑃 (23)

ΔG = RT ln
𝑷𝟐

𝑷𝟏

= RT ln 
𝑽𝟏
𝑽𝟐

(24)



Numerical
Q1. Calculate the free energy change (ΔG) which occurs when 1 mole 

of an ideal gas expands reversibly and isothermally at 37oC from an 

Initial volume of 55 litres to 1000 litres.

ΔG = RT ln 
𝑽𝟏
𝑽𝟐

=2.303RT log 
𝑽𝟏
𝑽𝟐

Given:                              ΔG = 2.303X8.314 JK-1mole-1X310KXlog55/1000

N=1mole                                 =-7476.8 J K-1

T=37C=310K

V1=55 lit

V2=1000 lit



The gibb’ s helmholTz equaTion
Consider a system in the initial state at temperature T1.If the temperature 
increases by an infinitesimally small amount dT and becomes T+dT. 

→

→

If the Gibb’s Free energy of the initial state be G1 at temperature T  
and be G1+dG1 at T+ dT .Similarly, if Gibb’s Free energy of the final state 
be G2 at temperature T  and be G2+dG2 at T+ dT 

Initial state
T, G1

Final  state
T, G2

Initial state
T+dT, G1+dG1

Final state
T+dT, G2+dG2



If the pressure remains constant all along, the equation (19), which is

dG=VdP-SdT                               (19)

Becomes                   dG=-SdT

So for the initial and final states we can write,

dG1=-S1dT                                  (25)

dG2=-S2dT                                  (26)

Subtracting (25) from (26), we get

d(G2-G1)=-(S2-S1)dT

dΔG=-ΔSdT                                 (27)

As the pressure is constant, therefore,

( 
𝜕(∆𝐺)

𝜕𝑇
)P=-ΔS                                 (28)



Also from equation       ΔG=ΔH-TΔS (10)

We get                           -ΔS=(ΔG-ΔH)/T

Equation (28) thus becomes 

(ΔG-ΔH)/T= ( 
𝜕(∆𝐺)

𝜕𝑇
)P                  (29)

(ΔG-ΔH)=T ( 
𝜕(∆𝐺)

𝜕𝑇
)P

ΔG=ΔH+T ( 
𝝏(∆𝑮)

𝝏𝑻
)P                                            (30)

• This is known as the Gibb’s Helmholtz equation. 

• It is applicable to all processes occurring at constant pressure.

• It has been used to calculate the heat change, ΔH, for a reaction 

taking place at constant pressure, provided the free energy change at 

two different values is known.



Numerical
Q2. The free energy change accompanying a given process is -85.77kJ
At 25oC and -83.68kJ at 35oC. Calculate the enthalpy change, ΔH for the
process at 30oC.

( 
𝝏(∆𝑮)

𝝏𝑻
)P=-83.68-(-85.77)/10=0.209 kJ K-1

Given:                                          ΔG at 30oC may be taken as the average                     
ΔG at 25oC=-85.77 kJ                 of the values at 25oC and 35oC
ΔG at 35oC=-83.68 kJ                 ΔG at 30oC=-(83.68+85.77)/2= -84.725 kJ
T=30oC                                    Therefore, -84.725= ΔH+303K X 0.209 kJ K-1

ΔH=-148.05 kJ
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